
Chapter 6 • Allen & Kennedy, Optimizing Compilers for Modern Architectures

Creating Coarse-Grained
Parallelism

I t d tiIntroduction

Chapter 6: Focus on parallelism for SMPs
Contrast with Chapter 5 (vector and superscalar processors)
Focus on parallelizing outer loops

Often contain large blocks of work in each iteration

Thread creation, barrier synchronization expensive
Tradeoff: synchronization overhead vs. parallelism/load balance

Transformations that uncover coarse-grained parallelism
1. Define or review each transformation
2. Contrast with use in Chapter 5 (if applicable)
3. Describe effect on dependences
4. Discuss when it can/should be applied

O iOverview

Transformations on Single Loops
Privatization, Alignment, Code Replication, Loop Distribution & Fusion

Transformations on Perfect Loop NestsTransformations on Perfect Loop Nests
Loop Interchange, Loop Skewing

Transformations on Imperfectly Nested Loops
M ltil l L F iMultilevel Loop Fusion

I. Single-Loop Methods

Privatization
Loop Distribution

Focus on…
(1) Parallelizing sequential loopsp

Alignment
Code Replication
Loop Fusion

() g q p
(2) Increasing granularity of parallel loops

S l P i ti ti (/)
I. Single Loop Methods

Scalar Privatization (1/4)

The Transformation
Make a variable used only within an iteration private

DO I = 1, N
T A(I)

PARALLEL DO I = 1, N
PRIVATE t

T = A(I)
A(I) = B(I)
B(I) = T

ENDDO

t = A(I)
A(I) = B(I)
B(I) = t

ENDDO
END PARALLEL DO

S l P i ti ti (/)
I. Single Loop Methods

Scalar Privatization (2/4)

Comparison with Chapter 5
Similar to scalar expansion

Also useful in parallelization (p. 243)

DO I = 1, N
T$(I) = A(I)
A(I) = B(I)p (p)

But privatization better for SMPs
Like scalar expansion, not cost-free

A(I) B(I)
B(I) = T$(I)

ENDDO
T = T$(N)

DO I = 1, N
T A(I)

PARALLEL DO I = 1, N
PRIVATE t

T = A(I)
A(I) = B(I)
B(I) = T

ENDDO

t = A(I)
A(I) = B(I)
B(I) = t

ENDDO
END PARALLEL DO

S l P i ti ti (/)
I. Single Loop Methods

Scalar Privatization (3/4)

Effect on Dependences
Eliminates loop-carried and loop-independent dep’s
associated with a scalarassoc ated t a sca a

Like scalar expansion
Makes loop parallelizable

DO I = 1, N
T A(I)

PARALLEL DO I = 1, N
PRIVATE t

T = A(I)
A(I) = B(I)
B(I) = T

ENDDO

t = A(I)
A(I) = B(I)
B(I) = t

ENDDO
END PARALLEL DO

S l P i ti ti (/)
I. Single Loop Methods

Scalar Privatization (4/4)

When to Privatize a Scalar in a Loop Body
When all dep’s carried by a loop involve a privatizable variable

Privatizable: Every use follows a definition (in the loop body)y (p y)
Equivalently, no upwards-exposed uses in the loop body
Determine privatizability through data flow analysis (or SSA form – p.242)

If cannot privatize, try scalar expansion (p. 243)

DO I = 1, N
T A(I)T = A(I)
A(I) = B(I)
B(I) = T

ENDDOENDDO

A P i ti ti
I. Single Loop Methods

Array Privatization

Make an array used only within an iteration private

PARALLEL DO I = 1, 100
PRIVATE t(N)
t(1) = X
DO J = 2 N

DO I = 1, 100
T(1) = X
DO J = 2 N DO J = 2, N

t(J) = t(J-1) + B(I,J)
A(I,J) = t(J)

ENDDO

DO J = 2, N
T(J) = T(J-1)+B(I,J)
A(I,J) = T(J)

ENDDO
IF (I==100) T(1:N) = t(1:N)

ENDDO
ENDDO

Overview of finding privatizable arrays: p. 244

L Ali t (/)
I. Single Loop Methods

Loop Alignment (1/4)

Effect on Dependences
Problem: Source computed on iteration prior to sink

DO I = 2, N
A(I) = B(I)+C(I)
D(I) = A(I-1)*2.0

A(2)= A(3)= A(4)= A(5)= A(6)=

D(I) A(I 1) 2.0
ENDDO =A(1)

I = 2

=A(2)

3

=A(3)

4

=A(4)

5

=A(5)

6

Solution: Compute sources and sinks on same iterationSolution: Compute sources and sinks on same iteration
A(2)= A(3)= A(4)= A(5)= A(6)=

=A(2) =A(3) =A(3) =A(5)=A(1)

I = 1 2 3 4 5 6

L Ali t (/)
I. Single Loop Methods

Loop Alignment (2/4)

The Transformation
Naive implementation

DO i = 1, N
IF (i>1) A(i) = B(i)+C(i)
IF (i<N) D(i+1) = A(i)*2.0

DO I = 2, N
A(I) = B(I)+C(I)
D(I) = A(I-1)*2.0 IF (i<N) D(i+1) A(i) 2.0

ENDDO
D(I) A(I 1) 2.0

ENDDO

A(2)= A(3)= A(4)= A(5)= A(6)=
Overhead due to extra
iteration and conditional
t t b d d

=A(2) =A(3) =A(3) =A(5)=A(1)

I = 1 2 3 4 5 6

tests can be reduced...

L Ali t (/)
I. Single Loop Methods

Loop Alignment (3/4)

The Transformation
Improved implementation (Eliminates extra iteration & conditionals)

D(2) = A(1)*2.0
DO i = 2, N-1
A(i) = B(i)+C(i)
D(i+1) = A(i)*2.0

DO I = 2, N
A(I) = B(I)+C(I)
D(I) = A(I-1)*2.0 D(i+1) A(i) 2.0

ENDDO
A(N) = B(N)+C(N)

D(I) A(I 1) 2.0
ENDDO

A(2)= A(3)= A(4)= A(5)= A(6)=

=A(2) =A(3) =A(3) =A(5)=A(1)

I = 1 2 3 4 5 6

L Ali t (/)
I. Single Loop Methods

Loop Alignment (4/4)

When NOT to Apply
Alignment cannot eliminate a carried dependence in a recurrence (p. 248)
Also alignment conflicts: two dependences can’t be simultaneously aligned

Example:

A(2)= A(3)= A(4)= A(2)= A(3)= A(4)=

I 2 3 4

=A(1)+A(2) =A(2)+A(3) =A(3)+A(4)

I 2 3 4

=A(1)+A(2) =A(2)+A(3) =A(3)+A(4)

I = 2 3 4 I = 2 3 4

When TO Apply
Applied along with Code Replication, so let’s discuss that first...

C d R li ti (/)
I. Single Loop Methods

Code Replication (1/2)

Effect on Dependences
Want to eliminate alignment conflicts by eliminating loop-carried deps

The Transformation
Replace the code at the sink of a loop-carried dependence with the
expression computed at the sourcee p ess o co puted at t e sou ce

A(2)=expr2 A(3)=expr3 A(4)=expr4 A(2)=expr2 A(3)=expr3 A(4)=expr4

I = 2 3 4

=A(1)+A(2) =A(2)+A(3) =A(3)+A(4)

I = 2 3 4

=A(1)+A(2) =expr2+A(3) =expr3+A(4)

I = 2 3 4 I = 2 3 4

C d R li ti (/)
I. Single Loop Methods

Code Replication (2/2)

DO I = 1 N
The Transformation

DO I = 1, N
A(I+1) = B(I)+C
X(I) = A(I+1)+A(I)

ENDDO

DO I = 1, N
A(I+1) = B(I)+CA(I+1) = B(I)+C

IF (I==1) THEN
t = A(I)

A(2)=expr2 A(3)=expr3 A(4)=expr4

ELSE
t = B(I-1) + C

END IF
I = 2 3 4

=A(1)+A(2) =expr2+A(3) =expr3+A(4)

X(I) = A(I+1)+t
ENDDO

I = 2 3 4

Ali t & R li ti
I. Single Loop Methods

Alignment & Replication

Effect on Dependences
Both eliminate loop-carried dependences

When to Align Loops and/or Replicate CodeWhen to Align Loops and/or Replicate Code
Obviously, replication has a higher cost; alignment is preferable
“Alignment, replication, and statement reordering are sufficient to
eliminate all carried dependences in a single loop that contains noeliminate all carried dependences in a single loop that contains no
recurrence and in which the distance of each dependence is a constant
independent of the loop index.” (Theorem 6.2)

Proved constructively
read §6.2.4 for full detail

L Di t ib ti (“ ”)
I. Single Loop Methods

Loop Distribution (“Loop Fission”)

Also eliminates carried dependences
Smaller loop bodies ⇒ Decreased granularity

This was good in Chapter 5 (vectorization); bad for SMPsThis was good in Chapter 5 (vectorization); bad for SMPs

Converts to loop-independent deps between loops
⇒ Implicit barrier between loops ⇒ Sync overhead

T p i ati ation alignment and eplication fi st∴ Try privatization, alignment, and replication first

Use to separate potentially-parallel code from
necessarily-sequential code in a loopy q p

Can recover granularity:
Use maximal loop distribution, then
Recombine (“fuse”) loops...Recombine (fuse) loops...

L F i (/)
I. Single Loop Methods

Loop Fusion (1/6)

The Transformation
Combine 2+ distinct loops into a single loop

DO I = 1 N

DO I = 1, N
A(I) = B(I)+1

ENDDO
PARALLEL DO I = 1, N
A(I) = B(I)+1DO I = 1, N

A(I) = B(I)+1
C(I) = A(I)+C(I-1)
D(I) = A(I)+X

distribute

ENDDO
DO I = 1, N
C(I) = A(I)+C(I-1)

ENDDO
fuse

A(I) = B(I)+1
D(I) = A(I)+X

ENDDO
DO I = 1, ND(I) A(I) X

ENDDO
ENDDO
DO I = 1, N
D(I) = A(I)+X

ENDDO

DO I 1, N
C(I) = A(I)+C(I-1)

ENDDO

L F i (/)
I. Single Loop Methods

Loop Fusion (2/6)

When to Fuse Loops: Safety Constraints
1. No fusion-preventing dependences

Def. 6.3: A loop-independent dependence between statements in two p p p
different loops is fusion preventing if fusing the two loops causes the
dependence to be carried by the combined loop in the reverse direction
Note that distributed loops can always be fused back together

DO I = 1, N
A(I) = B(I) + C DO I = 1, N

ENDDO
DO I = 1, N
D(I) = A(I+1) + E

ENDDO

A(I) = B(I) + C
D(I) = A(I+1) + E

ENDDO
ENDDO

L F i (/)
I. Single Loop Methods

Loop Fusion (3/6)

When to Fuse Loops: Safety Constraints
2. No invalid reordering

Two loops cannot be fused if there is a path of loop-independent p p p p
dependences between them that contains a loop or statement that is
not being fused with them

PARALLEL DO I = 1, N
A(I) = B(I) + 1

ENDDO
DO I = 1 NDO I = 1, N
C(I) = A(I) + C(I-1)

ENDDO
PARALLEL DO I = 1, N
D(I) = A(I) + C(I)

ENDDO

L F i (/)
I. Single Loop Methods

Loop Fusion (4/6)

When to Fuse Loops: Profitability Constraints
3. Separate sequential loops

Do not fuse sequential loops with parallel loops:q p p p
The result would be a sequential loop

L F i (/)
I. Single Loop Methods

Loop Fusion (5/6)

When to Fuse Loops: Profitability Constraints
4. No parallelism-inhibiting dependences

Do not fuse two loops if a fusion would cause a dependence between p p
the two original loops to be carried by the combined loop

DO I = 1, N
A(I+1) = B(I) + C

ENDDO
DO I 1 N

DO I = 1, N
A(I+1) = B(I) + C
D(I) A(I) + EDO I = 1, N

D(I) = A(I) + E
ENDDO

D(I) = A(I) + E
ENDDO

L F i (/)
I. Single Loop Methods

Loop Fusion (6/6)

When to Fuse Loops: Satisfying the Constraints
The problem of minimizing the number of parallel loops
using only correct and profitable loop fusion can be modeled us g o y co ect a d p o tab e oop us o ca be ode ed
as a typed fusion problem

Nearly useless description and “proof” on pp. 261–267
Cryptic pseudocode spanning pp. 262–263yp p p g pp

Does not describe what’s happening conceptually (!)

II. Perfect Loop Nests

Loop Interchange
(Loop Skewing)

L I t h P t 1 (/)
II. Perfect Loop Nests

Loop Interchange, Part 1 (1/2)

Comparison with Chapter 5
Vectorization: We moved loops to the innermost position

Th T f iThe Transformation
Parallelization: Move dependence-free loops to the outermost position

As long as a dependence will not be introduced

PARALLEL DO J = 1, MDO I = 1, N
DO I = 1, N
A(I+1,J) = A(I,J)+B(I,J)

ENDDO
ENDDO

DO J = 1, M
A(I+1,J) = A(I,J)+B(I,J)

ENDDO
ENDDO

L I t h P t 1 (/)
II. Perfect Loop Nests

Loop Interchange, Part 1 (2/2)

Effect on Dependences
Recall from Chapter 5:
1. Interchange loops ⇒ Interchange columns in direction matrix
2. Can interchange iff all rows still have < as first non-= entry

When to Interchange, Part 1
In a perfect loop nest, a particular loop can be parallelized
at the outermost level iff its column in the direction matrix
for that nest contains only “=” (Thm. 6.3)

Clearly all “ ” won’t violate #2 aboveClearly, all = won t violate #2 above
But are these really the only loops? (“iff”?!)

If column contains >, can’t move outermost by #2
If column contains <, can’t parallelize: carries a dependence, p p

II. Perfect Loop Nests

Sequentiality Uncovers Parallelism

If we commit to running a loop sequentially, we may be able to
uncover more parallelism inside that loop

If we move a loop outward and sequentialize it,
Its column is now the first in the direction matrix
Remove all rows that now start with a < (deps carried by this loop)

Correspond to dependences that carried by the sequential loop

Remove its column from the direction matrixRemove its column from the direction matrix
Use the revised direction matrix to find parallelism inside this loop

DO I = 1, N
PARALLEL DO J = 1, M

DO I = 1, N
DO J = 1, M

Seq I

,
DO K = 1, L

A(I+1,J,K) = A(I,J,K) + Q
B(I,J,K+1) = B(I,J,K) + R
C(I+1,J+1,K+1)=C(I,J,K)+S

,
DO K = 1, L
A(I+1,J,K) = A(I,J,K) + Q
B(I,J,K+1) = B(I,J,K) + R
C(I+1,J+1,K+1)= C(I,J,K) + S (, ,) (, ,)

ENDDO
ENDDO

ENDDO

[]<=

(, ,) (, ,)
ENDDO

ENDDO
ENDDO ⎥

⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

<<<
<==
==<

II. Perfect Loop Nests

Sequentiality Uncovers Parallelism: Skewing

Effect on Dependences (Recall from §5.9)
Changes some = entries to <

DO I = 2, N+1
DO J = 2, M+1
DO k = 1+I+J, L+I+J
A(I,J,k-I-J) = A(I,J-1,k-I-J) &

+ A(I-1,J,k-I-J)

DO I = 2, N+1
DO J = 2, M+1
DO K = 1, L
A(I,J,K) = A(I,J-1,K) &

+ A(I-1,J,K) (, ,)
A(I,J,k-I-J+1) = B(I,J,k-I-J) &

+ A(I,J,k-I-J)
ENDDO

ENDDO
ENDDO ⎥

⎥
⎥
⎥
⎤

⎢
⎢
⎢
⎢
⎡

<==
<=<
<<=

(, ,)
A(I,J,K+1) = B(I,J,K) &

+ A(I,J,K)
ENDDO

ENDDO
ENDDO ⎥

⎥
⎥
⎥
⎤

⎢
⎢
⎢
⎢
⎡

<==
==<
=<=

Skew innermost loop w.r.t. the two outer loops using the substitution

k K + I + J

ENDDO ⎥
⎦

⎢
⎣ ===

ENDDO ⎥
⎦

⎢
⎣ ===loop-independent

k = K + I + J

II. Perfect Loop Nests

Sequentiality Uncovers Parallelism: Skewing

Effect on Dependences (Recall from §5.9)
Changes some = entries to <

DO k = 5, N+M+1
DO I = MAX(2,k-M-L-1), MIN(N+1,k-L-2)
DO J = MAX(2,k-I-L), MIN(M+1,k-I-1)
A(I,J,k-I-J) = A(I,J-1,k-I-J) &

+ A(I-1,J,k-I-J)

DO I = 2, N+1
DO J = 2, M+1
DO k = 1+I+J, L+I+J
A(I,J,k-I-J) = A(I,J-1,k-I-J) &

+ A(I-1,J,k-I-J)(, ,)
A(I,J,k-I-J+1) = B(I,J,k-I-J) &

+ A(I,J,k-I-J)
ENDDO

ENDDO
ENDDO Both inner loops can

(, ,)
A(I,J,k-I-J+1) = B(I,J,k-I-J) &

+ A(I,J,k-I-J)
ENDDO

ENDDO
ENDDO ⎥

⎥
⎥
⎥
⎤

⎢
⎢
⎢
⎢
⎡

<==
<=<
<<=

Now make the innermost loop the outermost (interchange) and sequentialize it.

Both of the inner loops can then be parallelized

ENDDO p
be parallelized! ENDDO ⎥

⎦
⎢
⎣ ===

Both of the inner loops can then be parallelized.

II. Perfect Loop Nests

Sequentiality Uncovers Parallelism: Skewing

Skewing is useful for parallelization because it can
Make it possible to move a loop to the outermost position
Make a loop carry all the dependences originally carried by the loop w.r.t.
which it was skewedwhich it was skewed

Running the outer loop sequentially uncovers parallelism

III. Imperfectly Nested Loops

Multilevel Loop Fusion

M ltil l L F i
III. Imperfectly Nested Loops

Multilevel Loop Fusion

The Transformation
For imperfectly nested loops,

First, distribute loops maximallyFirst, distribute loops maximally
Then try to fuse perfect nests

M ltil l L F i
III. Imperfectly Nested Loops

Multilevel Loop Fusion

When to Fuse Loop Nests: Difficulties (Example 1)
Fusion of loop nests is actually NP-complete
Different loop nests require different permutations
P t ti i t f if bli di t ib t d lPermutations can interfere if reassembling distributed loops
Also memory hierarchy considerations

PARALLEL DO I = 1, N
DO J = 1, M
A(I,J+1) = A(I,J)+C

ENDDO
ENDDO

DO I = 1, N
DO J = 1, M

A(I,J+1) = A(I,J)+C ENDDO
PARALLEL DO J = 1, M
DO I = 1, N
B(I+1,J) = B(I,J)+D

ENDDO
ENDDO

(,) (,)
B(I+1,J) = B(I,J)+D

ENDDO
ENDDO

ENDDO

M ltil l L F i
III. Imperfectly Nested Loops

Multilevel Loop Fusion

When to Fuse Loop Nests: Difficulties (Example 2)
DO I = 1, N ! Can be parallel
DO J = 1, M ! Can be parallel
A(I,J) = A(I,J) + X I,J

ENDDO
ENDDO
DO I = 1, N ! Sequential
DO J = 1, M ! Can be parallel
B(I+1 J) = A(I J) + B(I J) JB(I+1,J) = A(I,J) + B(I,J)

ENDDO
ENDDO
DO I = 1, N ! Can be parallel
DO J = 1, M ! Sequential

J

IC(I,J+1) = A(I,J) + C(I,J)
ENDDO
ENDDO
DO I = 1, N ! Sequential
DO J 1 M ! C b ll l

I

DO J = 1, M ! Can be parallel
D(I+1,J) = B(I+1,J) + C(I,J) + D(I,J)

ENDDO
ENDDO

J

M ltil l L F i
III. Imperfectly Nested Loops

Multilevel Loop Fusion

When to Fuse Loop Nests: Algorithm (Heuristic)
Try to parallelize individual perfect loop nests (as described earlier)
Then use Typed Fusion to figure out which outer loops to merge, and
repeat the whole procedure for the nests inside the merged outer loopsrepeat the whole procedure for the nests inside the merged outer loops

The “type” of a nest has two components:
1. The outermost loop in the resulting nest
2. Whether this loop is sequential or parallel

PARALLEL DO I = 1, N
DO J = 1, M
A(I+1,J+1) = A(I+1,J) + C

ENDDO
Type is (I-loop, parallel)

ENDDO
ENDDO
PARALLEL DO J = 1, M
DO I = 1, N
X(I,J) = A(I,J) + C Type is (J-loop, parallel)

ENDDO
ENDDO

